Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests

نویسندگان

  • Dana R. N. Brown
  • M. Torre Jorgenson
  • Thomas A. Douglas
  • Vladimir E. Romanovsky
  • Knut Kielland
  • Christopher Hiemstra
  • Eugenie S. Euskirchen
  • Roger W. Ruess
چکیده

We examined the effects of fire disturbance on permafrost degradation and thaw settlement across a series of wildfires (from ~1930 to 2010) in the forested areas of collapse-scar bog complexes in the Tanana Flats lowland of interior Alaska. Field measurements were combined with numerical modeling of soil thermal dynamics to assess the roles of fire severity and climate history in postfire permafrost dynamics. Field-based calculations of potential thaw settlement following the loss of remaining ice-rich permafrost averaged 0.6m. This subsidence would cause the surface elevations of forests to drop on average 0.1m below the surface water level of adjacent collapse-scar features. Up to 0.5m of thaw settlement was documented after recent fires, causing water impoundment and further thawing along forest margins. Substantial heterogeneity in soil properties (organic layer thickness, texture, moisture, and ice content) was attributed to differing site histories, which resulted in distinct soil thermal regimes by soil type. Model simulations showed increasing vulnerability of permafrost to deep thawing and thaw settlement with increased fire severity (i.e., reduced organic layer thickness). However, the thresholds of fire severity that triggered permafrost destabilization varied temporally in response to climate. Simulated permafrost dynamics underscore the importance of multiyear to multidecadal fluctuations in air temperature and snow depth in mediating the effects of fire on permafrost. Our results suggest that permafrost is becoming increasingly vulnerable to substantial thaw and collapse after moderate to high-severity fire, and the ability of permafrost to recover is diminishing as the climate continues to warm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post...

متن کامل

Areal changes of land ecosystems in the Alaskan Yukon River Basin from 1984 to 2008

Multivariate alteration detection (MAD) and Bayesian inference (BI) methods are used to analyze land cover changes with Landsat images for the Alaskan Yukon River Basin from 1984 to 2008. The US Geological Survey National Land Cover Database 2001 (NLCD 2001) is treated as reference information to detect the changes. It is found that the regional land cover change has three general trends with v...

متن کامل

Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.

Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous ...

متن کامل

Permafrost Degradation and Ecological Changes Associated with a Warming Climate in Central Alaska

Studies from 1994–1998 on the Tanana Flats in central Alaska reveal that permafrost degradation is widespread and rapid, causing large shifts in ecosystems from birch forests to fens and bogs. Fine-grained soils under the birch forest are ice-rich and thaw settlement typically is 1– 2.5 m after the permafrost thaws. The collapsed areas are rapidly colonized by aquatic herbaceous plants, leading...

متن کامل

Landscape Effects of Wildfire on Permafrost Distribution in Interior Alaska Derived from Remote Sensing

Climate change coupled with an intensifying wildfire regime is becoming an important driver of permafrost loss and ecosystem change in the northern boreal forest. There is a growing need to understand the effects of fire on the spatial distribution of permafrost and its associated ecological consequences. We focus on the effects of fire a decade after disturbance in a rocky upland landscape in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015